Homework 6

Due February 22nd on paper at the beginning of class. Justify your answers. Please let me know if you have a question or find a mistake. There are some hints on the second page.

1. Borthwick Exercises 6.3, 6.4,
2. Let a and b be real numbers, and let

$$
f_{n}(x)=\frac{1}{n^{a}+n^{b} x^{2}} .
$$

(a) Find the values of a and b for which $f_{n}(x) \rightarrow 0$ in $L^{1}(\mathbb{R})$ as $n \rightarrow \infty$.
(b) Find the values of a and b for which $f_{n}(x) \rightarrow 0$ in $L^{2}(\mathbb{R})$ as $n \rightarrow \infty$.
(c) Find the values of a and b for which $f_{n}(x) \rightarrow 0$ in $L^{\infty}(\mathbb{R})$ as $n \rightarrow \infty$.
(d) Sketch the regions in the (a, b) plane which correspond to the values of a and b found above.
(e) This is not to hand in, but you may enjoy plotting some of these sequences in Desmos, especially if you find L^{p} spaces mysterious. Note that in parts (a) and (b) the sequence can have a growing spike near $x=0$, while in (c) it cannot. Also, if you make a Venn diagram like this https://static.dexform.com/media/docs/4436/venn-diagram-sample_bg1. png, where one circle is 'converges in L^{1} ', one circle is 'converges in L^{2} ', and one circle is 'converges in L^{∞} ', then out of the eight regions of the Venn diagram, from the sketch in part (d) you can see that six have possible values of a and b but two have none.

Hints:

1. 6.3 and 6.4 are similar to Theorem 4.12. 6.4 b is similar to Corollary 4.13 .
2. For (a), you must check whether $\int_{-\infty}^{\infty}\left|f_{n}(x)\right| d x \rightarrow 0$. For (b), you must check whether $\int_{-\infty}^{\infty}\left|f_{n}(x)\right|^{2}(x) \rightarrow 0$. For (c), you must check whether $\sup \left\{\left|f_{n}(x)\right|: x \in \mathbb{R}\right\}=\max \left\{\left|f_{n}(x)\right|: x \in\right.$ $\mathbb{R}\} \rightarrow 0$. To simplify the integrals, use a substitution of the form $x=n^{c} y$, where c is chosen in such a way that all of the n dependence comes out of the integral.
